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Abstract

In biogeochemical models coupled to ocean circulation models, vertical mixing is an
important physical process which governs the nutrient supply and the plankton resi-
dence in the euphotic layer. However, mixing is often poorly represented in numerical
simulations because of approximate parameterizations of sub-grid scale turbulence,5

wind forcing errors and other mis-represented processes such as restratification by
mesoscale eddies. Getting a sufficient knowledge of the nature and structure of these
error sources is necessary to implement appropriate data assimilation methods and to
evaluate their controllability by a given observation system.

In this paper, Monte Carlo simulations are conducted to study mixing errors induced10

by approximate wind forcings in a three-dimensional coupled physical-biogeochemical
model of the North Atlantic with a 1/4◦ horizontal resolution. An ensemble forecast
involving 200 members is performed during the 1998 spring bloom, by prescribing re-
alistic wind perturbations to generate mixing errors. It is shown that the biogeochemical
response can be rather complex because of nonlinearities and threshold effects in the15

coupled model. In particular, the response of the surface phytoplankton depends on
the region of interest and is particularly sensitive to the local stratification. We examine
the robustness of the statistical relationships computed between the various physical
and biogeochemical variables, and we show that significant information on the ecosys-
tem can be obtained from observations of chlorophyll concentration or sea surface20

temperature. In order to improve the analysis step of sequential assimilation schemes,
we propose to perform a simple nonlinear change of variables that operates separately
on each state variable, by mapping their ensemble percentiles on the Gaussian per-
centiles. It is shown that this method is able to substantially reduce the estimation error
with respect to the linear estimates computed by the Kalman filter.25
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1 Introduction

Our understanding of the ocean biogeochemistry and marine ecosystems has made
significant progress during the past decade. Coupled physical-biogeochemical models
are becoming a useful source of information for many practical applications of soci-
etal and environmental importance, such as the monitoring and forecasting of marine5

resources, water quality and the ocean carbon cycle. Biogeochemical modules are
bound to be an essential component of the operational oceanographic systems that
are being implemented, for instance, in the frame of the MERSEA and MyOcean Euro-
pean projects (Brasseur et al., 2009). In order to provide an accurate depiction of the
essential biological variables, these models should be used in conjunction with global10

scale observation systems involving ocean colour satellites and profiling floats that,
in the near future, will measure the sub-surface concentration of oxygen, chlorophyll
and nutrients (e.g., Gruber et al., 2006). The optimal merging of these multiple types
of information requires the development of purpose-built assimilation methods, taking
into account the specificities of the coupled physical-biogeochemical models, and of15

the data available for assimilation.
In order to design appropriate assimilation methods and to evaluate the level of con-

trol that can be expected from a given observation system, it is necessary to explore
the structure of the errors that affect the models and the observations. A standard
way to explore the model errors is to perform Monte Carlo simulations (e.g., Evensen20

1994). This requires making prior assumptions about the possible sources of errors,
originating for instance in a set of model parameters or in forcing functions. One then
postulates a prior probability distribution for these errors, from which a sample is drawn.
Model integrations are then performed for each element of the sample, and the result-
ing ensemble simulation provides an image of the model error structure (a sample of25

its probability distribution). From this image, it is then possible to diagnose how the
original errors cascade on the various model state variables, if the errors are corre-
lated in space and time, if robust relationships exist between model and observation

1291

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/6/1289/2009/osd-6-1289-2009-print.pdf
http://www.ocean-sci-discuss.net/6/1289/2009/osd-6-1289-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


OSD
6, 1289–1332, 2009

Controllability of
mixing errors
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errors, if these relationships are close to linearity, how a given observing system can
be used to control these errors, etc. Ensemble statistics can also be used to determine
to which extent the probability distribution functions (pdfs) are Gaussian, and from this,
the theoretical properties of the assimilation methods required to control the errors. In
the context of marine ecosystem modelling, it is useful for instance to understand the5

level of control that can be expected from ocean colour data.
In this paper, the Monte Carlo method is applied to the study of mixing errors in

a coupled physical-biogeochemical model (CPBM) of the North Atlantic ocean (de-
scribed in Sect. 2.1), with a specific focus on the analysis of the ecosystem response
to these errors. It is well known indeed that a cautious control of the ocean stratifica-10

tion is crucial for consistent data assimilation in such coupled models (Berline et al.,
2006), because it directly affects the diffusive flux of nutrient and plankton residence
time in the euphotic layer through vertical mixing. Erroneous vertical mixing can be
triggered by imperfections at different modelling stages, such as the wind forcing, the
turbulent closure scheme or even the representation of mesoscale eddies through the15

restratification of the upper ocean (Oschlies, 2002).
Monte Carlo experiments are performed by prescribing perturbations in the wind

forcing, which are assumed to be the main source of uncertainty in this study. Com-
mon knowledge suggests that wind errors will propagate into the system according to
the scheme of Fig. 1. Wind perturbations first induce perturbations of the mixed layer20

dynamics which translate into modifications of the mixed layer depth (MLD) and sea-
surface temperature (SST). Deepening or shallowing of the mixed layer then modifies
the nutrient supply in the euphotic layer, and subsequently the phytoplankton produc-
tion in the euphotic layer. The impact on the biogeochemical state can be measured by
the surface nitrate (NO3) and phytoplankton (PHY) concentration. The latter is directly25

related to surface chlorophyll concentration (CHL), a quantity that is well observed
through ocean colour satellites. By following this conceptual causal chain in the en-
semble, it will be possible to analyse the robustness of the statistical relationships be-
tween the successive model variables and the observed quantities, their dependence
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on space and time, and eventually the possibility to inverse the observed information
back to the model space and forcing functions. These questions will be examined in
Sect. 3.

One of the results of the ensemble runs will be that even for short-term forecasts
(1 day), the relationships between ecosystem variables and observations are not close5

to linear, so that they cannot be fully exploited by a linear estimation method. For such
a system, nonlinear methods will be useful to improve the quality of the estimates.
However, general nonlinear assimilation methods (e.g., particle filters as in Losa et
al., 2003) which make no specific assumption about the shape of the prior pdf are too
expensive for application to large size CPBM (16×106 state variables in our model),10

mainly because the identification of a general multivariate pdf with so many state vari-
ables would require too many ensemble members. Therefore, simplified solutions are
needed to cope with real size problems.

A possible approach to nonlinear estimation problems is the use of anamorphosis
transformations (i.e., Bertino et al., 2003), making nonlinear changes of variables to15

transform the forecast pdf (of arbitrary shape) into a Gaussian pdf. At first glance, this
does not necessarily simplify the problem because identifying the change of variables
requires a perfect knowledge of the original multivariate pdf, i.e. an ensemble as large
as previously mentioned for particle filters. The simplified solution that we propose in
this paper is to perform the change of variable separately for each state variable. It will20

be shown in Sect. 4 that, in this way, a moderate size ensemble is always sufficient
to identify changes of variable to transform each marginal pdf to a nearly Gaussian
pdf. This is obviously not sufficient to guarantee that the joint distribution becomes
Gaussian. However, it is usually possible to diagnose from the ensemble the situations
for which the approximation is accurate and the situations for which it is not. Both occur25

in our case study, so that we will be able to evaluate the relevance of the scheme in any
situation. A quantitative evaluation of the improvement with respect to linear estimates
is also attempted to conclude the study.
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2 Ocean model and wind forcing perturbations

2.1 The coupled physical-biogeochemical model

The CPBM used for the ensemble simulation was originally developed by Ourmières et
al. (2009) for investigating the relative importance of nutrient vs. physical data to con-
strain the seasonal development of the phytoplankton bloom in the North Atlantic. The5

components of the coupled model include a NEMO/OPA9 circulation model of the North
Atlantic basin at a 1/4◦ horizontal resolution (see Sect. 2.1.1), and a biogeochemical
model derived from the 6-compartment LOBSTER formulation (see Sect. 2.1.2). The
central model simulation (without wind perturbation), that will serve as a reference for
the Monte Carlo simulations, is described in Sect. 2.1.3.10

2.1.1 The North Atlantic Ocean circulation model

The circulation model is a DRAKKAR configuration (The DRAKKAR Group, 2007) of
the OPA9/NEMO model (Madec et al., 1998), which is a primitive equation model using
a free surface formulation. The domain covered is the North Atlantic basin from 20◦ S
to 80◦ N and from 98◦ W to 23◦ E. The horizontal grid has a so-called eddy-permitting15

resolution of 1/4◦ (Barnier et al., 2006). The vertical discretization is done using 45
geopotential levels, with a grid spacing increasing from 6 m at the surface to 250 m
at the bottom. Vertical mixing of momentum and tracers is modelled by the TKE tur-
bulence closure scheme (Blanke and Delecluse 1993), and convection is parameter-
ized with enhanced diffusivity and viscosity. Buffer zones are defined at the southern,20

northern and eastern (Mediterranean) boundaries with relaxation to Levitus tempera-
ture (TEM) and salinity (SAL) climatology (Levitus et al., 2001). The forcing fluxes are
calculated using bulk formulations and the ERA40 atmospheric forcing fields (ECMWF
2002). The prognostic variables include the zonal and meridional velocity components
(U and V), temperature, salinity and sea surface height (SSH).25
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2.1.2 The LOBSTER biogeochemical model

LOBSTER (LOcean Biogeochemical Simulation Tools for Ecosystem and Resources)
is a nitrogen-based ecosystem model that includes 6 pronostics variables in the
euphotic layer: nitrate (NO3), ammonium (NH4), phytoplankton (PHY), zooplankton
(ZOO), detritus and semi-labile dissolved organic nitrogen (Levy et al., 2005a). The5

bottom of the euphotic layer is prescribed at a constant depth of 191 m. Below the
euphotic layer, the model considers very simple parameterizations of decay to nitrate,
detritus sedimentation and remineralization of zooplankton mortality. LOBSTER is cou-
pled on-line to the circulation model without feedback of the biogeochemical variables
on the physics. The coupling frequency is equal to the circulation model time-step10

(40 min). The on-line coupling as well as the maximum frequency is thought to allow
accurate diagnostics of the ecosystem evolution without possible problems brought by
the use of averaged physical fields as an off-line configuration would need. More detail
about the model equations is available in Levy et al. (2005a and 2005b) and about the
North Atlantic implementation in Ourmières et al. (2009).15

2.1.3 Reference simulation of the coupled model

The reference simulation of the coupled model used in this study corresponds to year
1998 of the FREE simulation described in Ourmières et al. (2009) and performed with-
out data assimilation. In this simulation, the U and V components of the velocity and
the SSH variables are initialised to zero, while the TEM and SAL variables are interpo-20

lated using the December Levitus climatology (Levitus et al., 1998). Then, the physical
model is run for 12 years from 1 January 1984 to 1 January 1996, providing a balanced
physical ocean state to start the biogeochemical model spin-up. At that time, the nitrate
field is initialized with the December Levitus climatology 2001 (Conkright et al., 2002)
interpolated on the model grid. The other biogeochemical variables are set to constant25

values in the euphotic zone and to zero below: zooplankton is set to 0.01 mmol N/m3,
phytoplankton to 0.1 mmol N/m3 and ammonium, dissolved organic matter and detritus
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D. Béal et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

to 0.001 mmol N/m3. The coupled model is then run for 2 years starting January, the 1st

1996 and using the physical ocean state obtained after 12 years of spin-up. Ourmières
et al. (2009) analysed the convergence of the run and showed that the model was able
to reproduce satisfying seasonal cycles of the biogeochemical variables. In this study,
we will focus on the monthly period starting 15 April 1998, i.e. when the bloom event5

occurs.

2.2 Wind ensemble perturbations

In order to produce the Monte Carlo simulations, wind perturbations must be intro-
duced in the model forcing. In this section, we describe the method used to generate
perturbations of the wind components that are physically realistic. We proceed in two10

steps, assuming that the uncertainty in the wind can be estimated from the seasonal
and interanual variability of ERA40 winds during 1985–2000: (i) the covariance of the
wind variability is calculated using the ERA40 database, and (ii) the wind perturbations
are randomly sampled from a Gaussian probability distribution function with zero mean
and this pre-calculated covariance.15

In practice, an ensemble composed of one wind field every 4 days is extracted from
the 1985–2000 ERA40 winds during the 3 months period centred on 15 April. This
ensemble contains 368 members representative of the season during which the Monte
Carlo simulations are performed. An EOF analysis of this ensemble is performed,
and the first 50 dominant EOFs (representing 80% of the wind variance) are used to20

generate the perturbations. Figure 2 (left panel) illustrates the first 50 eigenvalues in
decreasing order, their corresponding percentage of explained variance and the cu-
mulated percentage of explained variance. Figure 2 (right panel) also shows the wind
variability standard deviation which is also the expected standard deviation of the wind
perturbations. It is especially large over the subpolar gyre and over the Gulf Stream25

region. As mentioned above, wind perturbations will generate anomalies of the bio-
geochemical model variables. As a result, a more intense ecosystem response will be
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expected in the subpolar and Gulf Stream regions. These regions are also the location
where the intensity of the spring bloom is maximum in the reference simulation.

The Monte Carlo simulations are then performed using an ensemble of 200 time-
varying perturbations of the wind forcing. Assuming that the typical decorrelation time
scale of wind errors is about 4 days, we draw independent 200-member samples every5

4 days (with the covariance defined above). These are then interpolated linearly in
time to obtain perturbations every 6 h, which is the input frequency of forcing fields in
the ocean model. In practice, this corresponds to sample coefficients for each EOF in
N (0,1) every 4 days, interpolate them in time to obtain the perturbation amplitude αi (t)
for every EOFi , i = 1...50, and them compute the perturbated wind using Eq. (1). It is10

worth noting that in Eq. (1), the normalized EOFs are multiplied by the squared root of
the corresponding eigenvalue, so that each EOF is a column of the squared root of the
perturbation covariance matrix.

WNDpert(t)=WNDreference(t) + α1(t)EOF1 + . . . + α50(t)EOF50 (1)

3 Study of the ensemble forecast15

The objective of this section is to describe the ensemble response of the model to the
wind perturbations described in section 2. This response will be analysed by studying
the ensemble forecast at a dozen of locations in the North Atlantic (at BATS, INDIA
and NABE biogeochemical stations, in the Gulf Stream – hereafter noted GS –, the
Labrador Sea – hereafter noted LAB–, the subtropical gyre, the Mauritanean coast,20

the Azores and the Norwegian coast regions), and by studying how the correlations
between model variables evolve with time. In addition, we will investigate the time
scales over which the correlations between the wind and the observed quantities can
be considered robust enough to be exploited by data assimilation systems.

More precisely, we will diagnose ensemble scatterplots of variables characterizing25

the relationships in the transfer function described in Fig. 1, i.e. WND/MLD (WND is
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the wind stress modulus expressed in N/m2), MLD/TEM, MLD/NO3, MLD/PHY and
NO3/PHY. To interpret in more detail the mechanisms behind these relationships, we
will also need to analyse the distribution of vertical TEM, NO3 and PHY profiles ob-
tained from the ensemble. In addition, the information extracted from the ensemble will
be synthesized using simple statistics:5

– the linear correlation coefficient (Pearson):

r =

∑
i (xi − x)(yi − y)√∑

i (xi − x)2
√∑

i (yi − y)2

(2)

where x=(xi )
n
i=1 and y=(yi )

n
i=1 are n-size samples of 2 random discrete variables

and x and y are respectively the mean of the samples;

– the rank correlation (Spearman) that is identical to the linear correlation except10

that each value xi (respectively yi ) is replaced by the value of its rank Ri (respec-
tively Si ) among all other xi ’s (respectively yi ’s) in the sample (i.e. the index of xi
in the sorted sample). The sequence Ri contains thus all integers between 1 and
n:

rs =

∑
i (Ri − R)(Si − S)√∑

i (Ri − R)2
√∑

i (Si − S)2

(3)15

where R and S are respectively the mean of R and S. The rank correlation is
useful to detect non linear relationships between variables; it is also more robust
than the linear correlation coefficient to some defects in the data (see Press et al.,
1992, chapter 14).
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3.1 The ensemble response at three locations

By looking at the ensemble forecast after only one day of run, we will see that mixing
will be the dominant mechanism responsible for the propagation of wind forcing errors
to the other state variables, in most locations. This is because the daily time scale is too
short to trigger intense dynamical interactions between the biogeochemical variables5

of the LOBSTER model.
The ensemble response is analysed in details at three specific locations: at the BATS

station (station 5 in Fig. 2; see Fig. 3), the GS station (station 9 in Fig. 2; see Fig. 4) and
the INDIA station (station 11 in Fig. 2; see Fig. 5). The figures show the five scatterplots
describing the transfer function of Fig. 1, as well as the ensemble vertical profiles of10

temperature, nitrate, phytoplankton and zooplankton. We will discuss in sequence the
propagation of uncertainties from the wind forcing to the physical properties, and then
to the biogeochemical properties of the mixed layer. The corresponding correlation
statistics are given in Table 1 for all 12 stations shown in Fig. 2.

3.1.1 Relationships between wind forcing and physical properties of the mixed15

layer

As a first step, we analyze the cascade of errors from the wind forcing to the physical
variables (first line in Fig. 1).
WND/MLD. Wind errors generate different types of response on the mixed layer depth
(see WND/MLD scatterplots in Figs. 3, 4 and 5). As a general rule, the larger the20

wind, the deeper the mixed layer; however, there are significant differences between
the 3 situations. At INDIA station, the relative modifications of the mixed layer depth
around 400 m are significanly smaller than those observed at BATS and GS, for similar
perturbations of the wind. Further, the spread around the linear regression is large for
small wind anomalies, while such spread does not occur in the same way at the other25

stations. For large wind anomalies, one can observe a sort of saturation of mixed layer
depth perturbations. The relationship between WND and MLD is obviously non-linear
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D. Béal et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

at INDIA station. This can be explained by the very different mixed layer structures
of the 3 reference states: at BATS, the mixed layer is very shallow and the turbulent
energy brought by the wind immediately propagates down to the thermocline. The
exactly opposite situation occurs at INDIA, where the water column of the reference
run is well mixed down to around 400 m. As a result, the mixed layer depth is relatively5

insensitive to wind anomalies.
MLD/TEM. In general, the consequence of the mixed layer deepening when wind forc-
ing increases is a cooling of the sea surface (see TEM/MLD plots in Figs. 3, 4 and 5).
The mixing of warm surface water with cold water at depth results in a cooling of the
mixed layer. The TEM/MLD relationships decrease monotonously, but not necessarily10

in a linear way. As an evidence, the shape of this relationship depends on the shape
of the vertical TEM profile. Moreover, the statistics of Table 1 show very high rank
correlations, meaning that a quite robust relationship may exist for this combination of
variables.

3.1.2 Relationships between mixed layer and biogeochemical properties15

As a second step, we analyze the cascade of errors from the mixed layer to biogeo-
chemical variables (second line in Fig. 1).
MLD/NO3. Deepening of the mixed layer is expected to bring nitrate to the surface
by mixing nutrient-rich deep water with nutrient-depleted surface water. This is exactly
what happens at BATS and GS stations, where a non-linear increase of NO3 concentra-20

tion is observed when the mixed layer deepens. From the scatterplot of the Gulf Stream
station, one can however notice the existence of a plateau around the reference NO3

concentration of 1.5 mmol m−3: the perturbations of the wind below some threshold
is unable to propagate anomalies down to the nutricline depth. By contrast, the wind
reduction yields restratification of the water column, which favours the consumption of25

NO3 by phytoplankton. At INDIA station, we observe the same phenomenology as
for MLD: the wind perturbations are not strong enough to significantly modify the NO3
concentration over the whole 400 m mixed layer.
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MLD/PHY. As phytoplankton concentration typically dominates in the euphotic zone
and weakens at depth, phytoplankton is expulsed from surface layers by mixing and
the MLD and PHY variables are negatively correlated. A non-linear decrease of PHY
concentration is thus observed when the mixed layer deepens. Compared to nitrate at
BATS and GS stations, this is an exactly opposite behaviour and again, mixing seems5

to be the dominant effect. The INDIA station still shows a complex response which is
difficult to interpret by simple mechanisms.

Finally, we analyze the scatterplots between the NO3 and PHY biogeochemical vari-
ables.
NO3/PHY. Surface phytoplankton generally decreases when nitrate concentration in-10

creases, as a results of the inverse distribution of these two quantities over the water
column. The scatterplots can be characterized by well-defined relationships with pretty
high correlations, sometimes alterated by threshold effects as illustrated for the Gulf
Stream Station. In the LOBSTER model, the phytoplankton growth is made possible
by 2 different pathways: the new production sustained by nitrate, and the regenerated15

production sustained by ammonium. A cluster of high phytoplankton concentrations
can be observed at BATS station for poor nitrate values, which might be explained by
the regenerated phytoplankton production associated to very thin MLD. This is an ex-
ample where a biogeochemical mechanism, different than mixing, transforms the error
propagation in the coupled model.20

In summary, the results discussed here above indicate that the propagation of wind
errors after a one-day forecast is strongly dependent on the local stratification of the
ocean. Mixing seems to be the dominant mechanism explaining the behaviour of the
ensemble. In a first approximation, the state variables (TEM, NO3, PHY) can be con-
sidered as passive tracers as long as the lead time remains small (one day). Further,25

the relationships between variables are generally loosing their robustness when the
mixed layer deepens. The response of the CPBM after one day can be very complex,
demonstrating non linear relationships between state variables with sometimes thresh-
old effects. In the following section, we will focus on the evolution of the ensemble
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spread and the corresponding correlations with time.

3.2 Temporal evolution of the ensemble response

The objective of this section is to analyse the stability of these statistical relationships
over a 2 week period after the application of wind perturbations. Figures 6 (BATS
station) and 7 (Gulf Stream) show the scatterplots after 1, 2, 4, 8 and 15 days of run,5

illustrating the temporal evolution of relationships between variables.
The spread of the ensemble with time is the first general trend clearly illustrated by

these 2 figures. The more the experiment lasts, the larger the dispersion (following
each line from left to right), and the variables tend to decorrelate with time. This is
particularly visible for MLD/TEM, PHY/TEM and MLD/PHY relationships, leading for in-10

stance to an almost complete decorrelation after 8 or 15 days between WND and MLD,
or between PHY and TEM, at BATS station. Note that sometimes one can observe a
decorrelation during the first days of run followed by the recorrelation of the ensemble,
as for example on the MLD/PHY scatterplots at Gulf Stream station before and after
the 4th day of run.15

The shape of the relationships may also change with time. For instance, the nonlin-
ear TEM/MLD relationship at BATS station is getting almost linear after the 8th day of
run (except for small MLD values). More than that, initially well-defined relationships
such as TEM/MLD and PHY/MLD at Gulf Stream station are becoming fuzzy after 4
days of run, and recover some structure after 8 or 15 days, but with a different shape.20

Finally, scatterplots could also disperse in such a way that no relationship exists any-
more (e.g., PHY/TEM scatterplots on Fig. 6 after 8 days).

As a conclusion, the ensemble response of the CPBM at lead times greater than
one day is quite complex, with often enhanced dispersion and structural modification
of the relationships. The temporal evolution of the scatterplots shows that reasonable25

relationships are sometimes preserved after 4 days of wind perturbation (e.g., at BATS
station), sometimes not (e.g., at Gulf Stream Station). In particular, relationships at
BATS station obtained after a 4-day forecast could be used to determine the cascade
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of errors from WND to MLD, from MLD to TEM, and finally from TEM to PHY. In the
following section, we will discuss the potential utilization of observed chlorophyll data by
inverting such relationships to control the state variables of the CPBM. In particular, the
existence of robust relationships over 4 to 6 days temporal windows will be examined
in a data assimilation perspective.5

3.3 Observability of physical and biogeochemical variables using chlorophyll
data

The objective of this section is to determine what is controlable in the CPBM using sur-
face chlorophyll measurements over typical data assimilation time scales of 4 to 6 days.
We propose to use the example of BATS station after 4 days of wind perturbations to10

illustrate how to use the chain of errors with a linear observational update.
The scatterplots of Fig. 8 can be used to describe the backward propagation of in-

formation from ocean colour observations to the model variables, consistently with the
scheme of Fig. 1. Indeed, chlorophyll measurements provide direct access to phy-
toplankton concentration information since the 2 quantities are linearly linked in the15

CPBM. The linear regression line of the ensemble shown on the first scatterplot of
Fig. 8 allows an estimation of nitrate concentration from phytoplankton. A similar re-
gression line on the second scatterplot then provides the mixed layer depth, which
could also be retrieved using the PHY/MLD scatterplot of the third scatterplot. MLD
information then provides estimates of temperature (fourth scatterplot), possibly in con-20

junction with directly observed temperature data. MLD can also be used to retrieve the
wind tension (fifth scatterplot). For each scatterplot, the obsevational updates (blue
dots) correspond to the projection of the ensemble (red dots) among the linear regres-
sion line (green line). The distance to the reference value (big blue dot) is an indication
of the estimation error.25

A limitation of the previous method is that the quality of the linear update requires
linear relationships with sufficiently low dispersion to compute accurate inverse esti-
mates. Linear updates could be used at stations such as BATS, but Gulf Stream or
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INDIA stations might ideally benefit from non linear relationships. In the next section,
we will demonstrate how linear updating methods can be modified to take into account
such non-linear relationships. Examples of application to the North Atlantic ocean will
be discussed to quantify the improvement.

4 Toward data assimilation: inference method using anamorphosis5

The diagnostics of the ensemble forecasts presented in the previous section show the
omnipresence of non-Gaussian behaviours as well as nonlinear relationships between
state variables. As a consequence, a linear observational update cannot be optimal.
The purpose of this section is to propose a method to do better than the linear estimate.
In the first subsection (Sect. 4.1), we demonstrate the problems that occur if a linear10

observational update is used. This will be done at the surface of the ocean using
the reference phytoplankton as observation, and each member of the ensemble as
background state. In a second stage (Sect. 4.2), a simple nonlinear transformation of
the variables (anamorphosis) is proposed to execute the observational update. And
finally, in Sect. 4.3, we illustrate how this anamorphic transformation can improve the15

quality of the estimation. The gain obtained in our specific case study is quantified for
the whole North Atlantic domain.

4.1 Problems with linear observational update

The linear observational update, that is used in conventional Kalman filters, is com-
puted using the formula:20

xa = xf + K
(

y − Hxf
)

(4)

where xf is the forecast (or background) state, y is the observation vector, H is the
observation operator and K is the gain. It minimizes the estimation error variance (and
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thus corresponds to the best linear unbiased estimate) if the gain is computed by:

K = Pf HT
(

HPf HT + R
)−1

(5)

where Pf is the forecast (or background) error covariance matrix and R is the obser-
vation error covariance matrix. It can be demonstrated that the gain (4) provides the
absolute minimum error variance estimate (not only the best linear one) providing that5

the probability distributions are Gaussian. In this case, it also corresponds to the maxi-
mum likelihood estimate. If the pdf are not Gaussian, it is possible that better estimates
are found.

In this paper, we restrict ourselves to the problem of estimating one state variable
from the perfect observation of another state variable. For instance, in Fig. 9, we esti-10

mate the mixed layer depth from one phytoplankton observation. We use the reference
simulation (large blue dot) as observation, and in order to get a solution that is sta-
tistically valid, we use sucessively each member of the ensemble as background (red
dots). The solution will be deduced from the distribution of the updated values (small
blue dots). In Sect. 4.1, we focus on the left panel of Fig. 9 which illustrates the linear15

observational update. For that specific example, formula (6) rewrites

MLDa = MLDf + γ
σMLD

σPHY

(
PHYo − PHYf

)
(6)

where (PHYf ,MLDf ) are the background values (red points), PHYo is the observed
value (abscissa of the large blue dot), (σPHY, σMLD) are the ensemble standard devia-
tion for PHY and MLD, and γ is the linear correlation coefficient between PHY and20

MLD. Since the observation is perfect, all updated values (PHYo,MLDa) (blue dots)
are aligned vertically on the PHYo value.

From the previous equation, it is apparent that the observational update (from the
red point to the blue point) is done along a straight line with the given slope γ σMLD

σPHY
,

which is the slope of the linear regression line (in green on the figure) passing through25
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the ensemble mean (green square). Hence, in this simple example, the ensemble
observational update can be viewed as drawing from each red point a parallel to the
green line and find the updated value at the intersection of this line with the vertical
PHY=PHYo.

But, from the ensemble displayed in Fig. 9 (red points), it is quite clear that the pdf5

is far from being Gaussian. For example, the quartiles of the marginal distributions
(thin dashed lines) are not symmetric around the median (thick dashed line). On the
other hand, in a general two-dimensional pdf, the regression line (for instance for MLD)
is defined as the line with maximum MLD probability density for each value of the
other variable (PHY). If a pdf is Gaussian, the regression line is a straight line and10

corresponds to the linear regression line defined above (and drawn in green in the
figure). Obviously, in our example, the maximum MLD probability for each PHY value
is usually well above or well below the linear regression line, indicating again a non-
Gaussian behaviour. Hence performing the observational update by following the linear
regression line without exploiting the real shape of the distribution necessarily leads to15

suboptimal estimates, with significantly larger estimation errors. Moreover, we observe
in Fig. 9 that the true regression line has a general positive curvature, so that the linear
estimate is almost systematically above the true MLD value.

4.2 Nonlinear observational update using anamorphosis

4.2.1 Description of the anamorphosis transformation20

We propose here a simplified nonlinear method with the general idea of transforming
each marginal pdf to a pdf that is close to Gaussian. This is achieved by performing
a change of variables (anamorphosis) separately for each single variable of the state
vector. For instance, Fig. 10 (left panel) shows the ensemble distribution of surface
nitrate at the BATS station. Again, the pdf is obviously far from Gaussian. Let us denote25

by x the original random variable, and by y=f (x), the transformed random variable.
The objective is to find the function f defining a change of variables (anamorphosis)
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such that the random variable y is as close as possible to the Gaussian pdf N (0,1).
Moreover, we want to infer f from the ensemble description of the pdf of x.

In order to reach that objective, the idea is to use the piecewise linear change of vari-
able f to remap as set of percentiles of the pdf of x to the same percentiles of N (0,1).
For instance, if xk , k=1, . . . , p are the p percentiles of x (such that p(x<xk)=rk , for5

a given set of values rk , k=1, . . ., p,0<rk<1, rk<rk+1), and yk are the corresponding
percentiles of N (0,1), the function f (x) writes:

f (x) =


y1 for x < x1

yk + yk+1−yk
xk+1−xk

(x − xk) for x ∈ [xk , xk+1]
yp for x > xp

(7)

This change of variables is only uniequivocal on the range [x1, xp] so that the reciprocal
function is only defined on the range [y1, yp]. In order to go back to the original space,10

we will use the transformation x=g(y) defined by

g(y) =


x1 for y < y1

xk + xk+1−xk
yk+1−yk

(y − yk) for y ∈ [yk , yk+1]
xp for y > yp

(8)

In order to reduce as much as possible the region of the state space out of the inter-
val [x1, xp], a good idea is certainly to include in the list of percentiles, the minimum
of the ensemble as x1 (as percentile r1=1/2n if n is the size of the ensemble) and the15

maximum of the ensemble as xp (as percentile rp=
2n−1

2n ). In that way, all estimates
will always be in the range described by the original ensemble, and no extrapolation is
possible.

Figure 10 (middle panel) shows the transformation that is obtained for the surface
nitrate concentration at BATS station, using p=20 equidistant percentiles (dividing the20

pdf into 20 equidistant intervals), and Fig. 10 (right panel) shows the resulting distri-
bution in the transformed space. By construction, this distribution has the same 20
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percentiles as N (0,1) and is thus close to Gaussian. The quality of the transforma-
tion relies on one subjective choice, which is the set of percentiles rk , k=1, . . ., p. The
larger p, the more complex is the change of variables that it is possible to represent.
But a complex transformation needs a large ensemble to be properly identified. It is
certainly a good policy to keep p small with respect to the size of the ensemble (p�n),5

and to distribute the percentiles as regularly as possible, for instance (with p odd):
r1=

1
2n , rk=

k−1
p−1 ,2≤k≤p−1, rp=

2n−1
2n .

Note that our approach is quite different from the Gaussian anamorphosis algorithm
proposed by Simon and Bertino (2009) to assimilate ocean colour data in a North At-
lantic model using the EnKF. In their study indeed, each model variables is transformed10

using the same monovariate anamorphosis function at all grid points of the model. In
the present implementation, the transformation is adjusted locally using the ensemble
statistics obtained at each particular grid point.

4.2.2 Observational update in the transformed space

We now apply this idea to the example presented in Sect. 4.1 (Fig. 9). We thus trans-15

form separately the MLD and PHY variables according to Eq. (7), using their respec-
tive percentiles corresponding to: rk=0.0025, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
0.9975, k=1, . . .,11. The transformed scatterplot is shown in Fig. 10 (middle panel).
The dotted line corresponds to the Gaussian percentiles yk∼−1.28, −0.84, −0.52,
−0.25, 0, 0.25, 0.52, 0.84, 1.28, k=2, . . .,10 (the two extreme ones are not drawn). By20

construction, each marginal pdf (for MLD and PHY) has got the same percentiles yk
as a Gaussian pdf. More remarkably, the mean of the transformed ensemble is close
to the origin of the axes, and the linear regression line (green line) is always close
to the true regression line (corresponding to maximum MLD probability for each PHY
value): these are two features that are not guaranteed by the method and that depend25

on the shape of the initial ensemble distribution. Moreover, due to the transformation
the linear correlation coefficient between MLD and PHY has increased from 0.85 to
0.97. We thus observe that in this particular case, it is more appropriate to perform
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the ensemble observational update in this transformed space (blue dots) since moving
parallely to the linear regression line (in green) is certainly here the right thing to do
(even if there are still a few members that are significantly above the linear regression
line).

After that, we transform the solution back into the original space using Eq. (8) (Fig. 9,5

right panel). As expected, the ensemble of updated values (blue dots) is closer to the
true state (large blue dot). The updated ensemble error variance is thus much smaller
than it was using directly the linear observational update (compare to Fig. 9, left panel).
If we also transform back the linear regression line from the transformed space (the
green straight line in the middle panel of Fig. 9), we obtain the thick green line of10

the right panel. We observe that it is very close to the true nonlinear regression line
(maximum MLD probability for each PHY value). Performing the observational update
in the transformed space is more or less like moving along this nonlinear regression
line, which leads obviously to a smaller resulting error variance.

In order to analyse the situations in which the method is likely to work correctly, we15

now redo mentally the same exercise for some of the example scatterplots presented
in Sect. 3. Four kind of situations may be distinguished. (i) The data are well corre-
lated and the regression line is linear (as for instance, in Fig. 3: WND/MLD, PHY/NO3,
in Fig. 4: WND/MLD or in Fig. 5: MLD/TEM, NO3/PHY). In this situation, the linear
observational update already exploits quite correctly the information contained in the20

observed variable, and only little improvement can be expected from the transforma-
tion. (ii) The data are well correlated, the regression line is nonlinear and monotonuous
(as for instance MLD/TEM, MLD/NO3, MLD/PHY in Fig. 3 and MLD/TEM, MLD/NO3,
MLD/PHY, NO3/PHY in Fig. 4). In this situation, performing a linear observational up-
date (following the linear regression line in green) is not a good solution, and making the25

simple anamorphosis described above always leads to a significant improvement. This
is the typical case for which it is designed, and the proposed solution is in this case very
close to optimality. (iii) The data are well correlated (nonlinearly), the regression line is
nonlinear and non-monotonuous (as for instance WND/MLD, MLD/NO3 or MLD/PHY in
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Fig. 5). In this situation, our simplified method does not fully solve the problems of the
linear observational update, and remains quite suboptimal. No separate transformation
of the two variables can transform the non-monotonuous regression line into a straight
line; a joint two-dimensional nonlinear transformation (or another method) would be
needed here. However, the method that we propose is not likely to be worse than the5

linear observational update. (iv) The data are poorly correlated (as can happen after
a longer forecast in Figs. 6, 7 or 8). In this situation, transforming the variables does
not help a lot: not much can anyway be expected from the multivariate observational
update.

Up to now, the method has only been applied to a state vector made of 2 variables10

and with a perfect observation of one of the variable. However, the method is gen-
eral and can be applied for any number of state variables and observations. One
only needs to transform every state variables and observations separately and per-
form the standard multivariate observational update in the transformed state space.
(If the observation operator is complex, transforming the corresponding observation15

requires computing the model equivalent to that observation for each member of the
ensemble and find the function f given by Eq. (7) from this ensemble of value.) If the
observations are not perfect, we need also to transform the observation error standard
deviation. This can be done approximately by using the local slope of the transforma-
tion f as a scale factor. The additional cost of these operations with respect to the20

linear observational update is very small so that the method can easily be applied to
large size systems (see Sect. 4.3).

It is also worth noting that the method also solves the problem of inequality con-
straints that can exist on the value of some state variables, for instance a≤x≤b. The
linear observational update (assuming Gaussianity) can indeed often violate such con-25

straints, thus leading to inappropriate estimates. With anamorphosis 7 and 8, it is
sufficient to choose x1≥a and xp≤b for the final estimate to statisfy the inequality con-
straints. This can be compared to the truncated Gaussian filter proposed by Lauvernet
et al. (2009) to solve the problem. By contrast to their approach, the method described
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here can only deal with inequality constraints that apply separately on each state vari-
able. Moreover, a larger size ensemble is required to identify the anamorphosis than
to identify a truncated Gaussian pdf. The truncated Gaussian filter is thus cheaper, it
can deal with more general inequality constraints, but the shape of the prior pdfs is less
general (truncated Gaussian pdfs are assumed).5

4.3 Application of the non linear update over the North Atlantic

The results detailed in the previous section for the BATS station are here generalized
to the whole North Atlantic domain, i.e. the same exercise is repeated at every model
grid point (no horizontal correlations are taken into account here). The surface phyto-
plankton of the reference simulation is considered to be the observation (still assumed10

perfect), and the 1-day ensemble forecast at surface is used the same way to compute
the observational update (i) in the regular state space and (ii) in the anamorphosed
state space. The benefit of the transformation is characterized by the standard devia-
tion of the updated ensemble.

Figure 11 shows the standard deviation of the 1-day forecast ensemble for the mixed15

layer depth, nitrate and zooplankton concentration before the observational update. It
represents the standard deviation of the error that we want to reduce using the phy-
toplankton observations. The maps show that the largest MLD errors (left panel) are
located in the Northern part of the domain that corresponds to large wind standard
deviations (see Sect. 2). Large MLD errors usually yield large NO3 errors (middle20

panel), as can be expected from the scheme in Fig. 1. In times, this leads to errors in
the primary and secondary productions, that are nevertheless confined here to the Gulf
Stream region (see ZOO errors standard deviations range, in the right panel of Fig. 11),
because spring bloom starts in that area at the time of this experiment (15 April).

Figure 12 shows the error standard deviation reduction that is obtained with the lin-25

ear observational update, i.e. the ratio of the updated ensemble standard deviation to
the forecast ensemble standard deviation (that is shown in the Fig. 11), and Fig. 13
shows the same result obtained using the anamorphosis scheme. These results can
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be analysed using the classification given in Sect. 4.2.2. (i) There are regions and
variables for which the linear observational update is already very good and not much
can be expected from anamorphosis to significantly improve the solution (it can even
degrade it). In these regions, the variable (MLD, NO3 or ZOO) is well correlated to
PHY and the regression line is linear. (ii) There are also many regions where the error5

standard deviation can be substantially reduced by anamorphosis. In these regions,
the variables are well correlated to PHY but along a nonlinear regression line, so they
are controllable through PHY observations but not with a linear analysis scheme. (iii)
Finally, there are regions where nor the linear observational update, nor anamorphosis
can reduce the forecast error that was induced by the wind perturbations. These errors10

cannot be controllable by PHY observations only. Direct observations would be nec-
essary. Fortunately, they mostly corresponds to regions where the forecast ensemble
error is small (see Fig. 11). Here, the wind is thus not likely to be one of the dominant
sources of errors, so that no conclusion of practical consequence can be derived from
this simplified study involving wind errors.15

Finally, in order to investigate the performance of the method for longer lead times,
the same experiment has been repeated for the ensemble forecast at days 2, 4, 8
and 15. In order to summarize the results, Fig. 14 shows for each case study, the
fraction of the domain (X-axis) for which the error reduction factor by the ensemble
observational update (fully illustrated at day 1 by the maps in Figs. 12 and 13) is lower20

than a given value (Y-axis). Thus, the lower the curve, the largest fraction of the domain
below a given reduction factor. For instance, at day 1 (thickest curves), the nonlinear
observational update (with anamorphosis) is always better than the linear observational
update (as already diagnosed from Figs. 12 and 13). As the length of the ensemble
forecast increases (from day 1 to day 15, from thick curves to thin curves), all three25

variables tend to decorrelate from phytoplankton observations (see Sect. 3.2), so that
the accuracy of the estimation is deteriorating with time whatever the analysis scheme.
We observe however that the nonlinear scheme remains most often significantly better
from day 1 to day 15 (except for zooplankton at day 15), which means that there are
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still regions where nonlinear correlations can be exploited to improve the observational
update. This figure can also be viewed as a synthetic (linear vs nonlinear) measure of
the controllability of these errors by phytoplankton observations, indicating that, in this
case study, controllability is decreasing with time.

5 Conclusions and perspectives5

The Monte Carlo experiments that were designed to study mixing errors in a coupled
physical biogeochemical model of the North Atlantic yield a number of conclusions
in the perspective of ocean colour data assimilation. As a general rule, the results
of the ensemble forecasts validate the conceptual transfer function proposed in the
introduction (Fig. 1): the first order causal relationships summarized in the figure lead10

to tight correlations. However, the response is rather complex, depending in particular
on the local stratification, in such a way that even the general features of the probability
distributions can change radically in space and time (e.g. sign and strength of the
correlation, shape of the regression lines, asymmetry between positive and negative
anomalies, presence of thresholds, . . . ). More embarassing, the tight correlations (in a15

nonlinear sense) observed for short term forecasts (1 day) decrease quickly with time,
and thereby reduce the level of control that can be expected from a partial observing
system like surface temperature and surface chlorophyll. Nevertheless, our results
suggest that, in many regions, a significant error variance reduction (on all variables
shown in Fig. 1) can be obtained from these observations if the forecast does not20

exceed a few days (2 to 7 days as a function of the region), and providing that the
nonlinear relationships between the variables are appropriately exploited.

Nonlinearities in the model indeed lead to many kinds of non-Gaussian behaviours,
that cannot be properly handled by classical linear assimilation methods. In order to
tackle this problem at moderate cost (i.e. in a way that is compatible with large size25

data assimilation problems), a simplified approximate nonlinear scheme has been pro-
posed in this paper. The idea is to perform a nonlinear change of variables (anamor-
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phosis) separately for each element of the control vector, by remapping the ensemble
percentiles of their marginal distribution to Gaussian percentiles. In that way, the ad-
ditional cost of the observational update to make it nonlinear is negligible; the main
cost is in the computation of an ensemble forecast that is sufficient in size to identify
properly the transformation functions. The method has been evaluated using ideal-5

ized inference experiments, in which several control variables (MLD, NO3, ZOO) are
estimated from a perfect and local chlorophyll observation. The results show that our
simplified scheme is often sufficient to detect and to exploit the nonlinear relationships
between observations and estimated variables, thus restoring the control of the system
in situations for which linear estimation fails. In many regions of the North Atlantic, a10

very substantial reduction of error variance has been obtained.
However, these results have been produced for wind errors only, while many orther

error sources exist in basin scale CPBMs. Before general conclusions can be reached
about the controllability of the system or about the least cost effective algorithm, it is
necessary that similar studies be attempted for other important sources of errors, like15

the parameters governing the ecosystem processes, the light forcing, the vertical ad-
vection or the horizontal advection and diffusion. In addition, in following this research
scenario, one should be aware of possible nonlinear interactions between the error
sources: conclusions obtained by considering them separately may no more be valid if
they are present altogether.20
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A., Boning, C., Dengg, J., Gulev, S., Le Sommer, J., Rémy, E., Talandier, C., Theetten, S.,
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Table 1. Linear vs rank correlation coefficients between variables at 14 stations of the North
Atlantic domain, after 1-day ensemble simulations.

Stations WND/MLD MLD/TEM MLD/NO3 TEM/PHY SAL/N03 NO3/PHY

Mauritania (1) 0.83/0.94 −0.88/−0.97 0.87/0.97 0.85/0.96 −0.93/−0.93 −0.81/−0.94
Norway (2) 0.85/0.06 0.98/0.91 0.75/0.37 −0.48/−0.01 0.97/0.93 −0.95/−0.67
New Foundland (3) 0.91/0.63 0.95/0.93 0.80/0.75 −0.79/−0.59 0.99/1.00 −0.96/−0.91
Acores (4) 0.87/0.87 −0.95/−1.00 0.95/0.99 0.99/0.98 −0.97/−0.98 −0.98/−0.99
BATS (5) 0.88/0.91 −0.78/−1.00 0.85/0.97 0.99/0.98 −0.99/−0.99 −0.99/−0.95
Labrador 1 (6) 0.89/0.81 0.79/0.94 0.88/0.99 −0.87/−0.84 0.98/0.98 −0.99/−0.97
Subtropical Gyre (7) 0.72/0.92 −0.83/−0.93 0.32/0.31 0.78/0.62 −0.45/−0.69 −0.84/−0.61
Labrador (8) 0.76/0.69 0.29/0.37 0.89/0.94 −0.31/−0.33 0.98/0.84 −1.00/−0.99
Gulf Stream (9) 0.90/0.91 −0.92/−0.98 0.89/0.4 091./0.99 −0.32/−0.17 0.85/0.39
Pomme (10) 0.87/0.93 −0.99/−1.00 0.96/0.99 0.99/1.00 0.05/0.41 −0.93/−0.98
INDIA (11) 0.31/0.48 −1.00/−0.98 0.45/0.41 0.53/0.48 0.93/0.97 −0.99/−0.98
NABE (12) 0.09/0.22 −0.97/−0.94 0.51/0.46 0.34/0.29 0.80/0.83 −0.90/−0.86
Gulf Stream 1 (13) 0.37/0.07 −0.67/−0.64 0.70/0.32 −0.10/−0.20 0.72/0.82 −0.73/−0.65
Gulf Stream 2 (14) 0.22/0.13 −0.98/−1.00 0.97/0.95 0.93/0.96 −0.73/−.72 −0.97/−0.99
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D. Béal et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Fig. 1. Illustration of the conceptual transfer function between wind errors and the variables of
a coupled physical-biogeochemical model. The arrows show the dominant effect that can be
intuitively expected from ocean mixed layer and ecosystem dynamics.
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Fig. 2. (left) Percentage of explained variance (left axis) and cumulated variance (right axis) for the first 50 EOFs computed from the
variability of the ERA40 1985-2000 wind archives. (right) Wind standarddeviation (in N/m2) calculated over the used archives.

bloom in the North Atlantic. The components of the cou-
pled model include a NEMO/OPA9 circulation model of the
North Atlantic basin at a1/4◦ horizontal resolution (see sec-
tion 2.1.1), and a biogeochemical model derived from the
6-compartment LOBSTER formulation (see section 2.1.2).
The central model simulation (without wind perturbation),
that will serve as a reference for the Monte Carlo simula-
tions, is described in section 2.1.3.

2.1.1 The North Atlantic Ocean circulation model

The circulation model is a DRAKKAR configuration (The
DRAKKAR Group, 2007) of the OPA9/NEMO model
(Madecet al., 1998), which is a primitive equation model
using a free surface formulation. The domain covered is the
North Atlantic basin from 20oS to 80oN and from 98oW to
23oE. The horizontal grid has a so-called eddy-permitting
resolution of1/4o (Barnieret al., 2006). The vertical dis-
cretization is done using 45 geopotential levels, with a grid
spacing increasing from 6 m at the surface to 250 m at the
bottom. Vertical mixing of momentum and tracers is mod-
elled by the TKE turbulence closure scheme (Blanke and
Delecluse 1993), and convection is parameterized with en-
hanced diffusivity and viscosity. Buffer zones are defined
at the southern, northern and eastern (Mediterranean) bound-
aries with relaxation to Levitus temperature (TEM) and salin-
ity (SAL) climatology (Levituset al., 2001). The forcing
fluxes are calculated using bulk formulations and the ERA40
atmospheric forcing fields (ECMWF 2002). The prognostic
variables include the zonal and meridional velocity compo-
nents (U and V), temperature, salinity and sea surface height

(SSH).

2.1.2 The LOBSTER biogeochemical model

LOBSTER (LOcean Biogeochemical Simulation Tools for
Ecosystem and Resources) is a nitrogen-based ecosystem
model that includes 6 pronostics variables in the euphotic
layer: nitrate (NO3), ammonium (NH4), phytoplankton
(PHY), zooplankton (ZOO), detritus and semi-labile dis-
solved organic nitrogen (Levyet al., 2005a). The bottom of
the euphotic layer is prescribed at a constant depth of 191 m.
Below the euphotic layer, the model considers very simple
parameterizations of decay to nitrate, detritus sedimentation
and remineralization of zooplankton mortality. LOBSTER is
coupled on-line to the circulation model without feedback of
the biogeochemical variables on the physics. The coupling
frequency is equal to the circulation model time-step (40
minutes). The on-line coupling as well as the maximum
frequency is thought to allow accurate diagnostics of the
ecosystem evolution without possible problems brought by
the use of averaged physical fields as an off-line configura-
tion would need. More detail about the model equations is
available in Levyet al. (2005a and 2005b) and about the
North Atlantic implementation in Ourmièreset al. (2009).

2.1.3 Reference simulation of the coupled model

The reference simulation of the coupled model used in this
study corresponds to year 1998 of the FREE simulation de-
scribed in Ourmièreset al. (2009) and performed without
data assimilation. In this simulation, the U and V compo-

Fig. 2. (left) Percentage of explained variance (left axis) and cumulated variance (right axis) for
the first 50 EOFs computed from the variability of the ERA40 1985–2000 wind archives. (right)
Wind standard deviation (in N/m2) calculated over the used archives.
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Fig. 3. Scatterplots of 1-day ensemble forecasts at BATS (65oW/32oN) station: the red points correspond to the 200 ensemble members;
the blue point corresponds to the reference (unperturbed) run; the green square is the ensemble mean; the green line represents the linear
regression of the ensemble; the black doted lines indicate the quartiles of thedistribution. Vertical profiles: the red lines correspond to the
200 ensemble members, the black line is the profile of the reference run,the green line is the mean profile over the members, blue - mean
plus or minus the standard deviation over the member.

tively the mean of the samples;

– the rank correlation (Spearman) that is identical to the
linear correlation except that each valuexi (respectively
yi) is replaced by the value of its rankRi (respectively
Si) among all otherxi’s (respectivelyyi’s) in the sample
(i.e. the index ofxi in the sorted sample). The sequence
Ri contains thus all integers between 1 andn:

rs =

∑

i(Ri − R)(Si − S)
√

∑

i(Ri − R)2
√

∑

i(Si − S)2
(3)

whereR andS are respectively the mean ofR andS.
The rank correlation is useful to detect non linear rela-
tionships between variables; it is also more robust than
the linear correlation coefficient to some defects in the
data (see Press et al., 1992, chapter 14).

3.1 The ensemble response at three locations

By looking at the ensemble forecast after only one day of
run, we will see that mixing will be the dominant mechanism
responsible for the propagation of wind forcing errors to the
other state variables, in most locations. This is because the
daily time scale is too short to trigger intense dynamical in-
teractions between the biogeochemical variables of the LOB-
STER model.

The ensemble response is analysed in details at three spe-
cific locations: at the BATS station (station 5 in Figure 2; see

Figure 3), the GS station (station 9 in figure 2; see Figure 4)
and the INDIA station (station 11 in Figure 2; see Figure 5).
The figures show the five scatterplots describing the transfer
function of Figure 1, as well as the ensemble vertical pro-
files of temperature, nitrate, phytoplankton and zooplankton.
We will discuss in sequence the propagation of uncertainties
from the wind forcing to the physical properties, and then to
the biogeochemical properties of the mixed layer. The corre-
sponding correlation statistics are given in Table 1 for all12
stations shown in Figure 2.

3.1.1 Relationships between wind forcing and physical
properties of the mixed layer

As a first step, we analyze the cascade of errors from the
wind forcing to the physical variables (first line in Figure 1).

WND/MLD . Wind errors generate different types of re-
sponse on the mixed layer depth (see WND/MLD scatter-
plots in Figure 3, 4 and 5). As a general rule, the larger the
wind, the deeper the mixed layer; however, there are signifi-
cant differences between the 3 situations. At INDIA station,
the relative modifications of the mixed layer depth around
400 m are significanly smaller than those observed at BATS
and GS, for similar perturbations of the wind. Further, the
spread around the linear regression is large for small wind
anomalies, while such spread does not occur in the same way
at the other stations. For large wind anomalies, one can ob-
serve a sort of saturation of mixed layer depth perturbations.
The relationship between WND and MLD is obviously non-
linear at INDIA station. This can be explained by the very

Fig. 3. Scatterplots of 1-day ensemble forecasts at BATS (65◦ W/32◦ N) station: the red points
correspond to the 200 ensemble members; the blue point corresponds to the reference (un-
perturbed) run; the green square is the ensemble mean; the green line represents the linear
regression of the ensemble; the black doted lines indicate the quartiles of the distribution. Verti-
cal profiles: the red lines correspond to the 200 ensemble members, the black line is the profile
of the reference run, the green line is the mean profile over the members, blue - mean plus or
minus the standard deviation over the member.
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Fig. 4. Same as figure 3 but for the so-called Gulf Stream (47oW/40oN) station.

different mixed layer structures of the 3 reference states:at
BATS, the mixed layer is very shallow and the turbulent en-
ergy brought by the wind immediately propagates down to
the thermocline. The exactly opposite situation occurs at IN-
DIA, where the water column of the reference run is well
mixed down to around 400m. As a result, the mixed layer
depth is relatively insensitive to wind anomalies.

MLD/TEM . In general, the consequence of the mixed
layer deepening when wind forcing increases is a cooling of
the sea surface (see TEM/MLD plots in Figure 3, 4 and 5).
The mixing of warm surface water with cold water at depth
results in a cooling of the mixed layer. The TEM/MLD re-
lationships decrease monotonously, but not necessarily ina
linear way. As an evidence, the shape of this relationship de-
pends on the shape of the vertical TEM profile. Moreover,
the statistics of Table 1 show very high rank correlations,
meaning that a quite robust relationship may exist for this
combination of variables.

3.1.2 Relationships between mixed layer and biogeo-
chemical properties

As a second step, we analyze the cascade of errors from the
mixed layer to biogeochemical variables (second line in Fig-
ure 1).

MLD/NO3 . Deepening of the mixed layer is expected
to bring nitrate to the surface by mixing nutrient-rich deep
water with nutrient-depleted surface water. This is exactly
what happens at BATS and GS stations, where a non-linear
increase of NO3 concentration is observed when the mixed
layer deepens. From the scatterplot of the Gulf Stream
station, one can however notice the existence of a plateau
around the reference NO3 concentration of 1.5 mmol m−3:
the perturbations of the wind below some threshold is un-

able to propagate anomalies down to the nutricline depth. By
contrast, the wind reduction yields restratification of thewa-
ter column, which favours the consumption of NO3 by phy-
toplankton. At INDIA station, we observe the same phe-
nomenology as for MLD: the wind perturbations are not
strong enough to significantly modify the NO3 concentration
over the whole 400 m mixed layer.

MLD/PHY . As phytoplankton concentration typically
dominates in the euphotic zone and weakens at depth, phyto-
plankton is expulsed from surface layers by mixing and the
MLD and PHY variables are negatively correlated. A non-
linear decrease of PHY concentration is thus observed when
the mixed layer deepens. Compared to nitrate at BATS and
GS stations, this is an exactly opposite behaviour and again,
mixing seems to be the dominant effect. The INDIA station
still shows a complex response which is difficult to interpret
by simple mechanisms. Finally, we analyze the scatterplots
between the NO3 and PHY biogeochemical variables.

NO3/PHY. Surface phytoplankton generally decreases
when nitrate concentration increases, as a results of the in-
verse distribution of these two quantities over the water col-
umn. The scatterplots can be characterized by well-defined
relationships with pretty high correlations, sometimes alter-
ated by threshold effects as illustrated for the Gulf Stream
Station. In the LOBSTER model, the phytoplankton growth
is made possible by 2 different pathways: the new produc-
tion sustained by nitrate, and the regenerated production sus-
tained by ammonium. A cluster of high phytoplankton con-
centrations can be observed at BATS station for poor nitrate
values, which might be explained by the regenerated phy-
toplankton production associated to very thin MLD. This is
an example where a biogeochemical mechanism, different
than mixing, transforms the error propagation in the coupled

Fig. 4. Same as Fig. 3 but for the so-called Gulf Stream (47◦ W/40◦ N) station.
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Fig. 5. Same as figure 3 but for INDIA (25oW/55oN) station

model.
In summary, the results discussed here above indicate that

the propagation of wind errors after a one-day forecast is
strongly dependent on the local stratification of the ocean.
Mixing seems to be the dominant mechanism explaining the
behaviour of the ensemble. In a first approximation, the state
variables (TEM, NO3, PHY) can be considered as passive
tracers as long as the lead time remains small (one day). Fur-
ther, the relationships between variables are generally loos-
ing their robustness when the mixed layer deepens. The re-
sponse of the CPBM after one day can be very complex,
demonstrating non linear relationships between state vari-
ables with sometimes threshold effects. In the following sec-
tion, we will focus on the evolution of the ensemble spread
and the corresponding correlations with time.

3.2 Temporal evolution of the ensemble response

The objective of this section is to analyse the stability of
these statistical relationships over a 2 week period after the
application of wind perturbations. Figures 6 (BATS station)
and 7 (Gulf Stream) show the scatterplots after 1, 2, 4, 8
and 15 days of run, illustrating the temporal evolution of
relationships between variables.

The spread of the ensemble with time is the first general
trend clearly illustrated by these 2 figures. The more the ex-
periment lasts, the larger the dispersion (following each line
from left to right), and the variables tend to decorrelate with
time. This is particularly visible for MLD/TEM, PHY/TEM
and MLD/PHY relationships, leading for instance to an al-
most complete decorrelation after 8 or 15 days between
WND and MLD, or between PHY and TEM, at BATS sta-
tion. Note that sometimes one can observe a decorrelation

during the first days of run followed by the recorrelation of
the ensemble, as for example on the MLD/PHY scatterplots
at Gulf Stream station before and after the 4th day of run.

The shape of the relationships may also change with time.
For instance, the nonlinear TEM/MLD relationship at BATS
station is getting almost linear after the 8th day of run (ex-
cept for small MLD values). More than that, initially well-
defined relationships such as TEM/MLD and PHY/MLD at
Gulf Stream station are becoming fuzzy after 4 days of run,
and recover some structure after 8 or 15 days, but with a dif-
ferent shape. Finally, scatterplots could also disperse insuch
a way that no relationship exists anymore (e.g., PHY/TEM
scatterplots on Figure 6 after 8 days).

As a conclusion, the ensemble response of the CPBM at
lead times greater than one day is quite complex, with often
enhanced dispersion and structural modification of the rela-
tionships. The temporal evolution of the scatterplots shows
that reasonable relationships are sometimes preserved after 4
days of wind perturbation (e.g., at BATS station), sometimes
not (e.g., at Gulf Stream Station). In particular, relationships
at BATS station obtained after a 4-day forecast could be used
to determine the cascade of errors from WND to MLD, from
MLD to TEM, and finally from TEM to PHY. In the fol-
lowing section, we will discuss the potential utilization of
observed chlorophyll data by inverting such relationshipsto
control the state variables of the CPBM. In particular, the
existence of robust relationships over 4 to 6 days temporal
windows will be examined in a data assimilation perspective.

3.3 Observability of physical and biogeochemical vari-
ables using chlorophyll data

The objective of this section is to determine what is contro-
lable in the CPBM using surface chlorophyll measurements

Fig. 5. Same as Fig. 3 but for INDIA (25◦ W/55◦ N) station
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D. Béal et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

8 D. Béal et al.: Controllability of mixing errors in a coupled physical biogeochemical model

Stations WND/MLD MLD/TEM MLD/NO3 TEM/PHY SAL/N03 NO3/PHY

Mauritania (1) 0.83/0.94 -0.88/-0.97 0.87/0.97 0.85/0.96 -0.93/-0.93 -0.81/-0.94
Norway (2) 0.85/0.06 0.98/0.91 0.75/0.37 -0.48/-0.01 0.97/0.93 -0.95/-0.67
New Foundland (3) 0.91/0.63 0.95/0.93 0.80/0.75 -0.79/-0.59 0.99/1.00 -0.96/-0.91
Acores (4) 0.87/0.87 -0.95/-1.00 0.95/0.99 0.99/0.98 -0.97/-0.98 -0.98/-0.99
BATS (5) 0.88/0.91 -0.78/-1.00 0.85/0.97 0.99/0.98 -0.99/-0.99 -0.99/-0.95
Labrador 1 (6) 0.89/0.81 0.79/0.94 0.88/0.99 -0.87/-0.84 0.98/0.98 -0.99/-0.97
Subtropical Gyre (7) 0.72/0.92 -0.83/-0.93 0.32/0.31 0.78/0.62 -0.45/-0.69 -0.84/-0.61
Labrador (8) 0.76/0.69 0.29/0.37 0.89/0.94 -0.31/-0.33 0.98/0.84 -1.00/-0.99
Gulf Stream (9) 0.90/0.91 -0.92/-0.98 0.89/0.4 091./0.99 -0.32/-0.17 0.85/0.39
Pomme (10) 0.87/0.93 -0.99/-1.00 0.96/0.99 0.99/1.00 0.05/0.41 -0.93/-0.98
INDIA (11) 0.31/0.48 -1.00/-0.98 0.45/0.41 0.53/0.48 0.93/0.97 -0.99/-0.98
NABE (12) 0.09/0.22 -0.97/-0.94 0.51/0.46 0.34/0.29 0.80/0.83 -0.90/-0.86
Gulf Stream 1 (13) 0.37/0.07 -0.67/-0.64 0.70/0.32 -0.10/-0.20 0.72/0.82 -0.73/-0.65
Gulf Stream 2 (14) 0.22/0.13 -0.98/-1.00 0.97/0.95 0.93/0.96 -0.73/-0.72 -0.97/-0.99

Table 1. Linear vs rank correlation coefficients between variables at 14 stations of the North Atlantic domain, after 1-day ensemble simula-
tions

- day 1: +0.82/+0.86 > day 2: +0.90/+0.91 > day 4: +0.86/+0.88 > day 8: +0.66/+0.67 > day 15: +0.59/+0.67 -
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Fig. 6. Scatterplots of ensemble forecasts at BATS station (65oW/32oN) after 1, 2, 4, 8 and 15 days (from left to right): WND/MLD (top
line), MLD/TEM (central line) and TEM/PHY (bottom line) relationships. Similarcolour code as in Figure 3.Fig. 6. Scatterplots of ensemble forecasts at BATS station (65◦ W/32◦ N) after 1, 2, 4, 8 and 15

days (from left to right): WND/MLD (top line), MLD/TEM (central line) and TEM/PHY (bottom
line) relationships. Similar colour code as in Fig. 3.
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Fig. 7. Scatterplots of ensemble forecasts at Gulf Stream station (47oW/40oN) after 1, 2, 4, 8 and 15 days (from left to right): WND/MLD
(top line), MLD/TEM (central line) and MLD/PHY (bottom line) relationships. Similar colour code as in Figure 3.

over typical data assimilation time scales of 4 to 6 days. We
propose to use the example of BATS station after 4 days of
wind perturbations to illustrate how to use the chain of errors
with a linear observational update.

The scatterplots of Figure 8 can be used to describe the
backward propagation of information from ocean colour
observations to the model variables, consistently with the
scheme of Figure 1. Indeed, chlorophyll measurements
provide direct access to phytoplankton concentration in-
formation since the 2 quantities are linearly linked in the
CPBM. The linear regression line of the ensemble shown
on the first scatterplot of Figure 8 allows an estimation
of nitrate concentration from phytoplankton. A similar
regression line on the second scatterplot then provides the
mixed layer depth, which could also be retrieved using
the PHY/MLD scatterplot of the third scatterplot. MLD
information then provides estimates of temperature (fourth
scatterplot), possibly in conjunction with directly observed
temperature data. MLD can also be used to retrieve the
wind tension (fifth scatterplot). For each scatterplot, the
obsevational updates (blue dots) correspond to the projection
of the ensemble (red dots) among the linear regression line
(green line). The distance to the reference value (big blue
dot) is an indication of the estimation error.

A limitation of the previous method is that the quality

of the linear update requires linear relationships with suffi-
ciently low dispersion to compute accurate inverse estimates.
Linear updates could be used at stations such as BATS, but
Gulf Stream or INDIA stations might ideally benefit from
non linear relationships. In the next section, we will demon-
strate how linear updating methods can be modified to take
into account such non-linear relationships. Examples of ap-
plication to the North Atlantic ocean will be discussed to
quantify the improvement.

4 Toward data assimilation: inference method using
anamorphosis

The diagnostics of the ensemble forecasts presented in the
previous section show the omnipresence of non-Gaussian
behaviours as well as nonlinear relationships between state
variables. As a consequence, a linear observational update
cannot be optimal. The purpose of this section is to propose
a method to do better than the linear estimate. In the first
subsection (section 4.1), we demonstrate the problems that
occur if a linear observational update is used. This will be
done at the surface of the ocean using the reference phyto-
plankton as observation, and each member of the ensemble
as background state. In a second stage (section 4.2), a simple
nonlinear transformation of the variables (anamorphosis)is

Fig. 7. Scatterplots of ensemble forecasts at Gulf Stream station (47◦ W/40◦ N) after 1, 2, 4, 8
and 15 days (from left to right): WND/MLD (top line), MLD/TEM (central line) and MLD/PHY
(bottom line) relationships. Similar colour code as in Fig. 3.
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Fig. 8. Scatterplots of ensemble forecasts at BATS (65oW/32oN) station after 4 days: the red points correspond to the 200 ensemble members;
the big blue point corresponds to the reference (unperturbed) run; the green square is the ensemble mean; the green line represents the linear
regression of the ensemble; the blue points indicate the linear update of members following the green regression line.

proposed to execute the observational update. And finally, in
section 4.3, we illustrate how this anamorphic transformation
can improve the quality of the estimation. The gain obtained
in our specific case study is quantified for the whole North
Atlantic domain.

4.1 Problems with linear observational update

The linear observational update, that is used in conventional
Kalman filters, is computed using the formula:

xa = xf + K
(

y − Hxf
)

(4)

wherexf is the forecast (or background) state,y is the ob-
servation vector,H is the observation operator andK is the
gain. It minimizes the estimation error variance (and thus
corresponds to the best linear unbiased estimate) if the gain
is computed by:

K = PfHT
(

HPfHT + R
)−1

(5)

wherePf is the forecast (or background) error covariance
matrix andR, the observation error covariance matrix. It can
be demonstrated that the gain (4) provides the absolute min-
imum error variance estimate (not only the best linear one)
providing that the probability distributions are Gaussian. In
this case, it also corresponds to the maximum likelihood es-
timate. If the pdf are not Gaussian, it is possible that better
estimates are found.

In this paper, we restrict ourselves to the problem of esti-
mating one state variable from the perfect observation of an-
other state variable. For instance, in figure 9, we estimate the
mixed layer depth from one phytoplankton observation. We
use the reference simulation (large blue dot) as observation,
and in order to get a solution that is statistically valid, we
use sucessively each member of the ensemble as background
(red dots). The solution will be deduced from the distribution
of the updated values (small blue dots). In Section 4.1, we
focus on the left panel of Figure 9 which illustrates the lin-
ear observational update. For that specific example, formula
linobsupd rewrites

MLDa = MLDf + γ
σMLD

σPHY

(

PHYo − PHYf
)

(6)

where (PHYf , MLDf ) are the background values (red
points), PHYo is the observed value (abscissa of the large
blue dot),(σPHY, σMLD) are the ensemble standard deviation
for PHY and MLD, andγ is the linear correlation coefficient
between PHY and MLD. Obviously, since the observation
is perfect all updated values(PHYo, MLDa) (blue dots) are
aligned vertically on the PHYo value.

From the previous equation, it is apparent that the ob-
servational update (from the red point to the blue point)
is done along a straight line with the given slopeγ σMLD

σPHY
,

which is the slope of the linear regression line (in green
on the figure) passing through the ensemble mean (green
square). Hence, in this simple example, the ensemble ob-
servational update can be viewed as drawing from each red
point a parallel to the green line and find the updated value
at the intersection of this line with the vertical PHY= PHYo.

But, from the ensemble displayed in Figure 9 (red points),
it is quite clear that the pdf is far from being Gaussian.
For example, the quartiles of the marginal distributions
(thin dashed lines) are not symmetric around the median
(thick dashed line). On the other hand, in a general two-
dimensional pdf, the regression line (for instance for MLD)
is defined as the line with maximum MLD probability
density for each value of the other variable (PHY). If a
pdf is Gaussian, the regression line is a straight line and
corresponds to the linear regression line defined above (and
drawn in green in the figure). Obviously, in our example, the
maximum MLD probability for each PHY value is usually
well above or well below the linear regression line, indi-
cating again a non-Gaussian behaviour. Hence performing
the observational update by following the linear regression
line without exploiting the real shape of the distribution
necessarily leads to suboptimal estimates, with significantly
larger estimation errors. Moreover, we observe in Figure 9
that the true regression line has a general positive curvature,
so that the linear estimate is almost systematically above the
true MLD value.

Fig. 8. Scatterplots of ensemble forecasts at BATS (65◦ W/32◦ N) station after 4 days: the
red points correspond to the 200 ensemble members; the big blue point corresponds to the
reference (unperturbed) run; the green square is the ensemble mean; the green line represents
the linear regression of the ensemble; the blue points indicate the linear update of members
following the green regression line.
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Fig. 9. Observational update at BATS station (65oW/32oN) using a perfect phytoplankton observation. The figure shows the 1-day forecast
ensemble (red dots), with mean (green square) and linear regressionline (thin green line), the reference simulation (large blue dot) that gives
the PHY observation and the update ensemble (blue dots). The left panelillustrates a linear observational update performed in the original
state space. In the middle panel the linear observation update is performed in a transformed state space (by anamorphosis). In the right panel
the solution showed in the middle panel is transformed back into the original state space. The linear regression line of the middle panel (thin
green line) transforms into the thick green line of the right panel. Dashed lines are medianes, and dotted lines are percentiles (quartiles in the
left panel and deciles in the other panels).

4.2 Nonlinear observational update using anamorpho-
sis

4.2.1 Description of the anamorphosis transformation

We propose here a simplified nonlinear method with the
general idea of transforming each marginal pdf to a pdf that
is close to Gaussian. This is achived by performing a change
of variables (anamorphosis) separately for each single
variable of the state vector. For instance, figure 10 (left
panel) shows the ensemble distribution of surface nitrate
at the BATS station. Again, the pdf is obviously far from
Gaussian. Let us denote byx the original random variable,
and byy = f(x), the transformed random variable. The
objective is to find the functionf defining a change of vari-
ables (anamorphosis) such that the random variabley is as
close as possible to the Gaussian pdfN (0, 1). Moreover, we
want to inferf from the ensemble description of the pdf ofx.

In order to reach that objective, the idea is to use the
piecewise linear change of variablef to remap as set of per-
centiles of the pdf ofx to the same percentiles ofN (0, 1).
For instance, ifxk, k = 1, . . . , p are thep percentiles ofx
(such thatp(x < xk) = rk, for a given set of values
rk, k = 1, . . . , p, 0 < rk < 1, rk < rk+1), and yk are
the corresponding percentiles ofN (0, 1), the functionf(x)
writes:

f(x) =







y1 for x < x1

yk + yk+1−yk

xk+1−xk

(x − xk) for x ∈ [xk, xk+1]

yp for x > xp

(7)

This change of variables is only uniequivocal on the
range[x1, xp] so that the reciprocal function is only defined

on the range[y1, yp]. In order to go back to the original space,
we will use the transformationx = g(y) defined by

g(y) =







x1 for y < y1

xk + xk+1−xk

yk+1−yk

(y − yk) for y ∈ [yk, yk+1]

xp for y > yp

(8)

In order to reduce as much as possible the region of the state
space out of the interval[x1, xp], a good idea is certainly
to include in the list of percentiles, the minimum of the
ensemble asx1 (as percentiler1 = 1/2n if n is the size of
the ensemble) and the maximum of the ensemble asxp (as
percentilerp = 2n−1

2n
). In that way, all estimates will always

be in the range described by the original ensemble, and no
extrapolation is possible.

Figure 10 (middle panel) shows the transformation that is
obtained for the surface nitrate concentration at BATS sta-
tion, using p=20 equidistant percentiles (dividing the pdf
into 20 equidistant intervals), and Figure 10 (right panel)
shows the resulting distribution in the transformed space.By
construction, this distribution has the same 20 percentiles
asN (0, 1) and is thus close to Gaussian. The quality of the
transformation relies on one subjective choice, which is the
set of percentilesrk, k = 1, . . . , p. The largerp, the more
complex is the change of variables that it is possible to rep-
resent. But a complex transformation needs a large ensemble
to be properly identified. It is certainly a good policy to keep
p small with respect to the size of the ensemble (p ≪ n),
and to distribute the percentiles as regularly as possible,for
instance (withp odd): r1 = 1

2n
, rk = k−1

p−1
, 2 ≤ k ≤ p − 1,

rp = 2n−1

2n
.

Note that our approach is quite different from the Gaus-
sian anamorphosis algorithm proposed by Simon and Bertino

Fig. 9. Observational update at BATS station (65◦ W/32◦ N) using a perfect phytoplankton ob-
servation. The figure shows the 1-day forecast ensemble (red dots), with mean (green square)
and linear regression line (thin green line), the reference simulation (large blue dot) that gives
the PHY observation and the update ensemble (blue dots). The left panel illustrates a linear
observational update performed in the original state space. In the middle panel the linear ob-
servation update is performed in a transformed state space (by anamorphosis). In the right
panel the solution showed in the middle panel is transformed back into the original state space.
The linear regression line of the middle panel (thin green line) transforms into the thick green
line of the right panel. Dashed lines are medianes, and dotted lines are percentiles (quartiles
in the left panel and deciles in the other panels).
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D. Béal et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

12 D. Béal et al.: Controllability of mixing errors in a coupled physical biogeochemical model

0 0.5 1 1.5
0

10

20

30

40

50

NO3

C
ou

nt

−5 0 5
0

10

20

30

40

NO3 anamorphosed

C
ou

nt

0 0.5 1 1.5
−5

0

5

NO3 percentiles

G
au

ss
ia

n 
pe

rc
en

til
es

Fig. 10. Illustration of the anamorphosis transformation for nitrate at BATS station.The left panel shows the histogram of nitrate values in
the 200-members 1-day forecast ensemble; the middle panel shows the piecewise linear change of variable mapping the nitrate percentiles to
theN (0, 1) percentiles and the right panel shows the histogram of the transformed variable.

(2009) to assimilate ocean colour data in a North Atlantic
model using the EnKF. In their study indeed, each model
variables is transformed using the same monovariate anamor-
phosis function at all grid points of the model. In the present
implementation, the transformation is adjusted locally using
the ensemble statistics obtained at each particular grid point.

4.2.2 Observational update in the transformed space

We now apply this idea to the example presented in section
4.1 (figure 9). We thus transformseparately the MLD and
PHY variables according to equation 7, using their respec-
tive percentiles corresponding to:rk = 0.0025, 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.9975, k = 1, . . . , 11.
The transformed scatterplot is shown in Figure 10 (middle
panel). The dotted line corresponds to the Gaussian per-
centilesyk ∼ −1.28, −0.84, −0.52, −0.25, 0, 0.25, 0.52,
0.84, 1.28, k = 2, . . . , 10 (the two extreme ones are not
drawn). By construction, each marginal pdf (for MLD and
PHY) has got the same percentilesyk as a Gaussian pdf.
More remarkably, the mean of the transformed ensemble
is close to the origin of the axes, and the linear regression
line (green line) is always close to the true regression line
(corresponding to maximum MLD probability for each PHY
value): these are two features that are not guaranteed by the
method and that depend on the shape of the initial ensemble
distribution. Moreover, due to the transformation the linear
correlation coefficient between MLD and PHY has increased
from 0.85 to 0.97. We thus observe that in this particular
case, it is more appropriate to perform the ensemble obser-
vational update in this transformed space (blue dots) since
moving parallely to the linear regression line (in green) is
certainly here the right thing to do (even if there are still a
few members that are significantly above the linear regres-
sion line).

After that, we transform the solution back into the original
space using equation 8 (Figure 9, right panel). As expected,
the ensemble of updated values (blue dots) is closer to the
true state (large blue dot). The updated ensemble error vari-
ance is thus much smaller than it was using directly the linear

observational update (compare to Figure 9, left panel). If we
also transform back the linear regression line from the trans-
formed space (the green straight line in the middle panel of
figure 9), we obtain the thick green line of the right panel. We
observe that it is very close to the true nonlinear regression
line (maximum MLD probability for each PHY value). Per-
forming the observational update in the transformed space is
more or less like moving along this nonlinear regression line,
which leads obviously to a smaller resulting error variance.

In order to analyse the situations in which the method is
likely to work correctly, we now redo mentally the same ex-
ercise for some of the example scatterplots presented in sec-
tion 3. Four kind of situations may be distinguished. (i) The
data are well correlated and the regression line is linear (as
for instance, in Figure 3: WND/MLD, PHY/NO3, in Fig-
ure 4: WND/MLD or in Figure 5: MLD/TEM, NO3/PHY).
In this situation, the linear observational update alreadyex-
ploits quite correctly the information contained in the ob-
served variable, and only little improvement can be expected
from the transformation. (ii) The data are well correlated,
the regression line is nonlinear and monotonuous (as for in-
stance MLD/TEM, MLD/NO3, MLD/PHY in Figure 3 and
MLD/TEM, MLD/NO3, MLD/PHY, NO3/PHY in Figure 4).
In this situation, performing a linear observational update
(following the linear regression line in green) is not a good
solution, and making the simple anamorphosis described
above always leads to a significant improvement. This is the
typical case for which it is designed, and the proposed so-
lution is in this case very close to optimality. (iii) The data
are well correlated (nonlinearly), the regression line is non-
linear and non-monotonuous (as for instance WND/MLD,
MLD/NO3 or MLD/PHY in Figure 5). In this situation,
our simplified method does not fully solve the problems
of the linear observational update, and remains quite sub-
optimal. No separate transformation of the two variables
can transform the non-monotonuous regression line into a
straight line; a joint two-dimensional nonlinear transforma-
tion (or another method) would be needed here. However, the
method that we propose is not likely to be worse than the lin-
ear observational update. (iv) The data are poorly correlated

Fig. 10. Illustration of the anamorphosis transformation for nitrate at BATS station. The left
panel shows the histogram of nitrate values in the 200-members 1-day forecast ensemble; the
middle panel shows the piecewise linear change of variable mapping the nitrate percentiles to
the N (0,1) percentiles and the right panel shows the histogram of the transformed variable.
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Fig. 11. Standard deviation of the 1-day forecast ensemble for the mixed layer depth (left panel), nitrate (middle panel) and zooplankton
(right panel) concentrations.

(as can happen after a longer forecast in Figures 6, 7 or 8).
In this situation, transforming the variables does not helpa
lot: not much can anyway be expected from the multivariate
observational update.

Up to now, the method has only been applied to a state
vector made of 2 variables and with a perfect observation of
one of the variable. However, the method is general and can
be applied for any number of state variables and observa-
tions. One only needs to transform every state variables and
observations separately and perform the standard multivari-
ate observational update in the transformed state space. (If
the observation operator is complex, transforming the corre-
sponding observation requires computing the model equiva-
lent to that observation for each member of the ensemble and
find the functionf given by equation 7 from this ensemble
of value.) If the observations are not perfect, we need also to
transform the observation error standard deviation. This can
be done approximately by using the local slope of the trans-
formationf as a scale factor. The additional cost of these
operations with respect to the linear observational updateis
very small so that the method can easily be applied to large
size systems (see section 4.3).

It is also worth noting that the method also solves the prob-
lem of inequality constraints that can exist on the value of
some state variables, for instancea ≤ x ≤ b. The linear ob-
servational update (assuming Gaussianity) can indeed often
violate such constraints, thus leading to inappropriate esti-
mates. With anamorphosis 7 and 8, it is sufficient to choose
x1 ≥ a andxp ≤ b for the final estimate to statisfy the in-
equality constraints. This can be compared to the truncated
Gaussian filter proposed by Lauvernetet. al. (2009) to solve
the problem. By contrast to their approach, the method de-
scribed here can only deal with inequality constraints that
apply separately on each state variable. Moreover, a larger
size ensemble is required to identify the anamorphosis than
to identify a truncated Gaussian pdf. The truncated Gaussian
filter is thus cheaper, it can deal with more general inequal-
ity constraints, but the shape of the prior pdfs is less general
(truncated Gaussian pdfs are assumed).

4.3 Application of the non linear update over the North
Atlantic

The results detailed in the previous section for the BATS sta-
tion are here generalized to the whole North Atlantic domain,
i.e. the same exercise is repeated at every model grid point
(no horizontal correlations are taken into account here). The
surface phytoplankton of the reference simulation is consid-
ered to be the observation (still assumed perfect), and the
1-day ensemble forecast at surface is used the same way
to compute the observational update (i) in the regular state
space and (ii) in the anamorphosed state space. The benefit
of the transformation is characterized by the standard devia-
tion of the updated ensemble.

Figure 11 shows the standard deviation of the 1-day fore-
cast ensemble for the mixed layer depth, nitrate and zoo-
plankton concentration before the observational update. It
represents the standard deviation of the error that we want
to reduce using the phytoplankton observations. The maps
show that the largest MLD errors (left panel) are located in
the Northern part of the domain that corresponds to large
wind standard deviations (see section 2). Large MLD errors
usually yield large NO3 errors (middle panel), as can be ex-
pected from the scheme in Figure 1. In times, this leads to
errors in the primary and secondary productions, that are nev-
ertheless confined here to the Gulf Stream region (see ZOO
errors standard deviations range, in the right panel of Figure
11), because spring bloom starts in that area at the time of
this experiment (April, 15th).

Figure 12 shows the error standard deviation reduction that
is obtained with the linear observational update, i.e. the ra-
tio of the updated ensemble standard deviation to the fore-
cast ensemble standard deviation (that is shown in the Figure
11), and Figure 13 shows the same result obtained unsing the
anamorphosis scheme. These results can be analysed using
the classification given in section 4.2.2. (i) There are regions
and variables for which the linear observational update is al-
ready very good and not much can be expected from anamor-
phosis to significantly improve the solution (it can even de-
grade it). In these regions, the variable (MLD, NO3 or ZOO)

Fig. 11. Standard deviation of the 1-day forecast ensemble for the mixed layer depth (left
panel), nitrate (middle panel) and zooplankton (right panel) concentrations.
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Fig. 12. Ratio of the updated ensemble standard deviation to the forecast ensemblestandard deviation (shown in Figure 11), as obtained
using the linear observational update.

Fig. 13. Ratio of the updated ensemble standard deviation to the forecast ensemblestandard deviation (shown in Figure 11), as obtained
using the nonlinear observational update (linear observational update inthe transformed space).

is well correlated to PHY and the regression line is linear. (ii)
There are also many regions where the error standard devia-
tion can be substantically reduced by anamorphosis. In these
regions, the variables are well correlated to PHY but along
a nonlinear regression line, so they are controllable through
PHY observations but not with a linear analysis scheme. (iii)
Finally, there are regions where nor the linear observational
update, nor anamorphosis can reduce the forecast error that
was induced by the wind perturbations. These errors cannot
be controllable by PHY observations only. Direct observa-
tions would be necessary. Fortunately, they mostly corre-
sponds to regions where the forecast ensemble error is small
(see Figure 11). Here, the wind is thus not likely to be one of
the dominant sources of errors, so that no conclusion of prac-
tical consequence can be derived from this simplified study
involving wind errors.

Finally, in order to investigate the performance of the
method for longer lead times, the same experiment has been
repeated for the ensemble forecast at days 2, 4, 8 and 15.
In order to summarize the results, Figure 14 shows for each
case study, the fraction of the domain (X-axis) for which the
error reduction factor by the ensemble observational update
(fully illustrated at day 1 by the maps in Figures 12 and 13) is
lower than a given value (Y-axis). Thus, the lower the curve,
the largest fraction of the domain below a given reduction
factor. For instance, at day 1 (thickest curves), the nonlin-

ear observational update (with anamorphosis) is always bet-
ter than the linear observational update (as already diagnosed
from Figures 12 and 13). As the length of the ensemble
forecast increases (from day 1 to day 15, from thick curves
to thin curves), all three variables tend to decorrelate from
phytoplankton observations (see section 3.2), so that the ac-
curacy of the estimation is deteriorating with time whatever
the analysis scheme. We observe however that the nonlinear
scheme remains most often significantly better from day 1 to
day 15 (except for zooplankton at day 15), which means that
there are still regions where nonlinear correlations can beex-
ploited to improve the observational update. This figure can
also be viewed as a synthetic (linear vs nonlinear) measure
of the controllability of these errors by phytoplankton obser-
vations, indicating that, in this case study, controllability is
decreasing with time.

5 Conclusions and perspectives

The Monte Carlo experiments that were designed to study
mixing errors in a coupled physical biogeochemical model
of the North Atlantic yield a number of conclusions in the
perspective of ocean colour data assimilation. As a general
rule, the results of the ensemble forecasts validate the con-
ceptual transfer function proposed in the introduction (Figure

Fig. 12. Ratio of the updated ensemble standard deviation to the forecast ensemble standard
deviation (shown in Fig. 11), as obtained using the linear observational update.
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Fig. 12. Ratio of the updated ensemble standard deviation to the forecast ensemblestandard deviation (shown in Figure 11), as obtained
using the linear observational update.

Fig. 13. Ratio of the updated ensemble standard deviation to the forecast ensemblestandard deviation (shown in Figure 11), as obtained
using the nonlinear observational update (linear observational update inthe transformed space).

is well correlated to PHY and the regression line is linear. (ii)
There are also many regions where the error standard devia-
tion can be substantically reduced by anamorphosis. In these
regions, the variables are well correlated to PHY but along
a nonlinear regression line, so they are controllable through
PHY observations but not with a linear analysis scheme. (iii)
Finally, there are regions where nor the linear observational
update, nor anamorphosis can reduce the forecast error that
was induced by the wind perturbations. These errors cannot
be controllable by PHY observations only. Direct observa-
tions would be necessary. Fortunately, they mostly corre-
sponds to regions where the forecast ensemble error is small
(see Figure 11). Here, the wind is thus not likely to be one of
the dominant sources of errors, so that no conclusion of prac-
tical consequence can be derived from this simplified study
involving wind errors.

Finally, in order to investigate the performance of the
method for longer lead times, the same experiment has been
repeated for the ensemble forecast at days 2, 4, 8 and 15.
In order to summarize the results, Figure 14 shows for each
case study, the fraction of the domain (X-axis) for which the
error reduction factor by the ensemble observational update
(fully illustrated at day 1 by the maps in Figures 12 and 13) is
lower than a given value (Y-axis). Thus, the lower the curve,
the largest fraction of the domain below a given reduction
factor. For instance, at day 1 (thickest curves), the nonlin-

ear observational update (with anamorphosis) is always bet-
ter than the linear observational update (as already diagnosed
from Figures 12 and 13). As the length of the ensemble
forecast increases (from day 1 to day 15, from thick curves
to thin curves), all three variables tend to decorrelate from
phytoplankton observations (see section 3.2), so that the ac-
curacy of the estimation is deteriorating with time whatever
the analysis scheme. We observe however that the nonlinear
scheme remains most often significantly better from day 1 to
day 15 (except for zooplankton at day 15), which means that
there are still regions where nonlinear correlations can beex-
ploited to improve the observational update. This figure can
also be viewed as a synthetic (linear vs nonlinear) measure
of the controllability of these errors by phytoplankton obser-
vations, indicating that, in this case study, controllability is
decreasing with time.

5 Conclusions and perspectives

The Monte Carlo experiments that were designed to study
mixing errors in a coupled physical biogeochemical model
of the North Atlantic yield a number of conclusions in the
perspective of ocean colour data assimilation. As a general
rule, the results of the ensemble forecasts validate the con-
ceptual transfer function proposed in the introduction (Figure

Fig. 13. Ratio of the updated ensemble standard deviation to the forecast ensemble stan-
dard deviation (shown in Fig. 11), as obtained using the nonlinear observational update (linear
observational update in the transformed space).
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D. Béal et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D. Béal et al.: Controllability of mixing errors in a coupledphysical biogeochemical model 15

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1
 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1
 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Fig. 14.Fraction of the domain (X-axis) for which the error reduction factor by the ensemble observational update (as illustrated for instance
in Figures 12 and 13 for day 1) is lower than a given value (Y-axis). Theresult is shown for the linear observational update (blue curves) and
for the anamorphosis nonlinear observational update (red curves),at day 1, 2, 4, 8 and 15 (from thick curves to thin curves). The estimated
variable is mixed layer depth (left panel), nitrate concentration (middle panel) or zooplankton concentration (right panel).

1): the first order causal relationships summarized in the fig-
ure lead to tight correlations. However, the response is rather
complex, depending in particular on the local stratification,
in such a way that even the general features of the probabil-
ity distributions can change radically in space and time (e.g.
sign and strength of the correlation, shape of the regression
lines, asymmetry between positive and negative anomalies,
presence of thresholds, . . . ). More embarassing, the tight cor-
relations (in a nonlinear sense) observed for short term fore-
casts (1 day) decrease quickly with time, and thereby reduce
the level of control that can be expected from a partial ob-
serving system like surface temperature and surface chloro-
phyll. Nevertheless, our results suggest that, in many regions,
a significant error variance reduction (on all variables shown
in Figure 1) can be obtained from these observations if the
forecast does not exceed a few days (2 to 7 days as a function
of the region), and providing that the nonlinear relationships
between the variables are appropriately exploited.

Nonlinearities in the model indeed lead to many kinds of
non-Gaussian behaviours, that cannot be properly handled
by classical linear assimilation methods. In order to tackle
this problem at moderate cost (i.e. in a way that is com-
patible with large size data assimilation problems), a simpli-
fied approximate nonlinear scheme has been proposed in this
paper. The idea is to perform a nonlinear change of vari-
ables (anamorphosis) separately for each element of the con-
trol vector, by remapping the ensemble percentiles of their
marginal distribution to Gaussian percentiles. In that way, the
additional cost of the observational update to make it nonlin-
ear is negligible; the main cost is in the computation of an en-
semble forecast that is sufficient in size to identify properly
the transformation functions. The method has been evalu-
ated using idealized inference experiments, in which several
control variables (MLD, NO3, ZOO) are estimated from a
perfect and local chlorophyll observation. The results show
that our simplified scheme is often sufficient to detect and to
exploit the nonlinear relationships between observationsand
estimated variables, thus restoring the control of the system
in situations for which linear estimation fails. In many re-

gions of the North Atlantic, a very substantial reduction of
error variance has been obtained.

However, these results have been produced for wind errors
only, while many orther error sources exist in basin scale
CPBMs. Before general conclusions can be reached about
the controllability of the system or about the least cost ef-
fective algorithm, it is necessary that similar studies be at-
tempted for other important sources of errors, like the pa-
rameters governing the ecosystem processes, the light forc-
ing, the vertical advection or the horizontal advection and
diffusion. In addition, in following this research scenario,
one should be aware of possible nonlinear interactions be-
tween the error sources: conclusions obtained by consider-
ing them separately may no more be valid if they are present
altogether.
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